The Diophantine Equation B 2 X 4 ? Dy 2 = 1

نویسنده

  • MICHAEL A. BENNETT
چکیده

If b and d are given positive integers with b > 1, then we show that the equation of the title possesses at most one solution in positive integers X; Y. Moreover, we give an explicit characterization of this solution, when it exists, in terms of fundamental units of associated quadratic elds. The proof utilizes estimates for linear forms in logarithms of algebraic numbers in conjunction with properties of Pellian equations and the Jacobi symbol and explicit determination of the integer points on certain elliptic curves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Diophantine Equation b²X^4 - dY² = 1

If b and d are given positive integers with b > 1, then we show that the equation of the title possesses at most one solution in positive integers X, Y . Moreover, we give an explicit characterization of this solution, when it exists, in terms of fundamental units of associated quadratic fields. The proof utilizes estimates for linear forms in logarithms of algebraic numbers in conjunction with...

متن کامل

Thue ’ s theorem and the diophantine equation x 2 − Dy 2 = ± N KEITH MATTHEWS

A constructive version of a theorem of Thue is used to provide representations of certain integers as x2 −Dy2, where D = 2, 3, 5, 6, 7.

متن کامل

Some asymptotic limits for solutions of Burgers equation

§1 – Introduction. In this paper, we compute the limits (1) γ p = lim t → ∞ t 1 2 (1 − 1 p) u(·, t) p , 1 ≤ p ≤ ∞ for solutions u(·, t) of the equation (2) u t + a u x + b u u x = c u xx satisfying the Cauchy condition (3) u(x, 0) = u 0 (x), u 0 ∈ L 1 (R), that is, u(·, t) − u 0 1 → 0 as t → 0, t > 0. Here, u(·, t) p denotes the L p norm of u(·, t) as a function of x for fixed t, i.e., (4) u(·,...

متن کامل

THUE ’ S THEOREM AND THE DIOPHANTINE EQUATION x 2 − Dy

A constructive version of a theorem of Thue is used to provide representations of certain integers as x2 −Dy2, where D = 2, 3, 5, 6, 7.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997